师资队伍

吕庚育

电话:

E-mail:lyugengyu@bjut.edu.cn

通讯地址:北京工业大学 信息楼

研究方向

主要从事机器学习、数据挖掘、人工智能等领域的基础理论和应用研究工作,主要研究方向如下:

[1] 理论层面:非完美数据条件下的机器学习算法,包括多标记学习(Multi-Label Learning)、偏标记学习(Partial-Label Learning)、多视图学习(Multi-View Learning)等。

[2] 应用层面:聚焦于深度学习框架下的多模态数据语义理解及其数据安全研究,包括多标记图像分类(Multi-Label Image Classification)、多模态学习(Multi-Modal Learning)、联邦学习(Federated Learning)等。

个人简介

吕庚育,男,校聘教授,博士生导师。2022年6月毕业于北京交通大学计算机科学与技术专业,获得工学博士学位。同年7月,加入北京工业大学计算机科学与技术系DMS实验室,入选北京工业大学高端人才队伍建设计划。

课题组目前有博士生1名,硕士生3名,本科生2名,氛围和谐融洽、积极向上。课题组提供3090多GPU服务器和4090GPU工作站多台,丰富的计算资源可供学生完成学习和科研任务。欢迎具有【扎实数学基础良好英文读写水平】以及拥有【强悍编程能力优秀自我驱动力】的计算机科学与技术、信息与计算科学等相关专业同学报考。

[个人主页][谷歌学术]

教育简历

20189-20226月,北京交通大学计算机与信息技术学院,博士

20169-20187月,北京交通大学计算机与信息技术学院,硕博连读

20129-20167月,北京联合大学信息学院,学士

工作履历

20227月至今,银河集团9873.cσm,校聘教授、博导

学术兼职

[1] 学术期刊审稿人:TPAMITNNLSTMMTCYBTCSVTTIIMLJINS、软件学报等;

[2] 学术会议程序委员会成员/审稿人:ICMLNeurIPSICLRCVPRICCVECCVAAAIIJCAIECML-PKDD等。

科研项目

[1] 中国博士后科学基金项目,2022-2024,主持

[2] 北京工业大学高端人才优秀人才项目,2023-2027,主持

荣誉和获奖

[1] 北京交通大学优秀博士学位论文,2022

[2] 知行奖学金(北京交通大学研究生最高荣誉)2021

[3] 宝钢优秀学生奖、华为奖学金、博士研究生国家奖学金等,2021

主要论文论著

[1] G. Lyu, S. Feng, T. Wang, C. Lang, Y. Li. GM-PLL: Graph Matching based Partial Label Learning. IEEE Transactions on Knowledge and Data Engineering. 33(2): 521-535. 2021 (CCF A, JCR:Q1, IF:9.235)

[2] G. Lyu, S. Feng, Y. Li. Partial Multi-Label Learning via Probabilistic Graph Matching Mechanism. ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2020: 105-113 (CCF A, Oral)

[3] G. Lyu, X. Deng, Y. Wu, S. Feng. Beyond Shared Subspace: A View-Specific Fusion for Multi-View Multi-Label Learning. AAAI Conference on Artificial Intelligence. 2022 (CCF A)

[4] G. Lyu, Y. Wu, S. Feng. Deep Graph Matching for Partial Label Learning. International Joint Conference on Artificial Intelligence. 2022: 3306-3312 (CCF A)

[5] G. Lyu, S. Feng, T. Wang, C. Lang. A Self-Paced Regularization Framework for Partial Label Learning. IEEE Transactions on Cybernetics. 52(2): 899-911. 2022 (CCF B, JCR:Q1, IF:19.118)

[6] G. Lyu, S. Feng, Y. Jin, T. Wang, C. Lang, Y. Li. Prior Knowledge Regularized Self-Representation Model for Partial Multi-Label Learning. IEEE Transactions on Cybernetics. 2021 (CCF B, JCR:Q1, IF:19.118)

[7] G. Lyu, S. Feng, Y. Li, Y. Jin, C. Lang. HERA: Partial Label Learning by Combining Heterogeneous Loss with Sparse and Low-Rank Regularization. ACM Transactions on Intelligent Systems and Technology. 11(3), 34:1-34, 2020 (JCR:Q1, IF:10.489)

[8] G. Lyu, S. Feng, W. Liu, Y. Li. Redundant Label Learning via Subspace Representation and Global Disambiguation. ACM Transactions on Intelligent Systems and Technology. 2022 (JCR:Q1, IF:10.489)

[9] G. Lyu, S. Feng, S. Wang, Z. Yang. Prior Knowledge Constrained Adaptive Graph Framework for Partial Label Learning. ACM Transactions on Intelligent Systems and Technology. 2022 (JCR:Q1, IF:10.489)

[10] G. Lyu, S. Feng, Y. Li. Partial Label Learning via Self-Paced Curriculum Strategy. The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases. 2020: 489-505 (CCF B)

[11] G. Lyu, S. Feng, Y. Li. Noisy Label Tolerance: A New Perspective of Partial Multi-Label Learning. Information Sciences. 543: 541-564, 2021 (CCF B, JCR:Q1, IF:8.233)

[12] Z. Li*, G. Lyu*(equal contribution), S. Feng. Partial Multi-Label Learning via Multi-Subspace Representation. International Joint Conference on Artificial Intelligence. 2020: 2612-2618 (CCF A)

[13] Y. Sun*, G. Lyu*(equal contribution), S. Feng. Partial Label Learning via Subspace Representation and Global Disambiguation. The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases. 2020: 439-454 (CCF B)

[14] Y. Wu, H. Liu, S. Feng, Y. Jin, G. Lyu, Z. Wu. GM-MLIC: Graph Matching based Multi-Label Image Classification. International Joint Conference on Artificial Intelligence. 2021: 1179-1185 (CCF A)

[15] Y. Wu, T. Liang, S. Feng, Y. Jin, G. Lyu, H. Fei, Y. Wang. MetaZSCIL: A Meta-Learning Approach for Generalized Zero-Shot Class Incremental Learning. AAAI Conference on Artificial Intelligence. 2023 (CCF A)

[16] X. Deng, S. Feng, G. Lyu, H. Liu, Y. Jin. Beyond Word Embeddings: Heterogeneous Prior Knowledge Driven Multi-Label Image Classification. IEEE Transactions on Multimedia. 2022 (CCF B, JCR:Q1, IF:8.182)

[17] L. Sun, S. Feng, J. Liu, G. Lyu, C. Lang. Global-Local Label Correlation for Partial Multi-Label Learning. IEEE Transactions on Multimedia. 2020. (CCF B, JCR:Q1, IF:8.182)

[18] X. Lu, S. Feng, G. Lyu, Y. Jin, C. Lang. “Distance-Preserving Embedding Adaptive Bipartite Graph Multi-View Learning with Application to Multi-Label Classification”, ACM Transactions on Knowledge Discovery from Data. 2022. (CCF B, JCR:Q1, IF:4.157)

[19] Z. Gu, S. Feng, R. Hu, G. Lyu. “ONION: Joint Unsupervised Feature Selection and Robust Subspace Extraction for Graph-Based Multi-View Clustering”, ACM Transactions on Knowledge Discovery from Data. 2022. (CCF B, JCR:Q1, IF:4.157)

更多论文详见【谷歌学术