研究方向
一直致力于半导体光电探测器和激光器芯片的研究,涉及材料物理,器件物理,工艺物理,测试表征等研究方向。
个人简介
李冲,副教授,博士生导师
教育简历
2009.09-2014.07,中国科学院半导体研究所,微电子与固体电子学,博士
2005.09-2009.07,北京理工大学,光电学院,电子科学与技术专业,学士
工作履历
2014.7~2018.6 北京工业大学 银河集团9873.cσm 讲师
2018.6~2018.6 北京工业大学 银河集团9873.cσm 副教授 博士生导师
学术兼职
1. Photonics 期刊 optoelectronics and Optical Materials 单元(三区 IF:2.536) 特邀编辑
2. Light: Science & Applications(一区top期刊 IF:20.275) 审稿人
课程教学
本科生教学:电磁场理论课程
科研项目
先后主持国家和省部级项目10项,包括:国家自然科学基金,科技部863计划,军委项目,北京市基金,北京市教委项目等
荣誉和获奖
1. 2022年获得“中国光学工程学会科技创新奖”一等奖
2. 指导2020年北京工业大学优秀硕士毕业论文1篇
3. 指导2021年北京工业大学优秀硕士毕业论文1篇
代表性研究成果
近五年在Scientific Report、APL、IEEE TED等学术刊物上第一作者发表SCI学术论文21篇,近五年申请国家发明专利12项,已授权6项。
针对未来空间光通信对大面阵、高速率、低噪声的通信需求,解决传统探测器在大孔径和高带宽之间的矛盾,研制的器件通光面积为2300μm2,带宽为14.1GHz,器件在光接收面积、响应速率和载流子倍增性能方面具有巨大优势。引入耦合光栅提高器件光响应,将 50×44 µm2器件的直流光响应提高了近20倍,交流光响应提高14dB,器件带宽仍为11.3GHz。
针对未来LIFI通信对大面阵、高速率、远距离的通信需求,研究传统Si探测器在大孔径和高带宽之间的矛盾,解决高性能Si探测器芯片进口产品垄断问题,研制的器件尺寸10mm,带宽 > 30MHz,暗电流 < 10-8 A。成功应用在了广角激光通信系统中。研究传统Si雪崩探测提前击穿和噪声问题,研制出倍增系数>100,带宽>100MHz的穿通型高灵敏Si-APD。
主要论文论著
[1] Chong Li, Kai Bao, et al.“Grating-enabled high-speed high-efficiency surface-illuminated silicon photodiodes”, Opt. Express 29(3), 3458-3464 (2021)
[2] Huang R , Li C, et al. Investigation of interface states between GaAs and Si3N4 after He+ implantation[J]. Journal of Radioanalytical and Nuclear Chemistry, 327, 905–911 (2021)
[3] S. Qin, Chong Li , et al. All-Si Large-Area Photodetectors With Bandwidth of More Than 10 GHz[J]. IEEE Transactions on Electron Devices, 66(12), 5187-5190, 2019.
[4] Li C, Qin S, Li B, et al. Enhancement of responsivity and speed in waveguide Ge/Si avalanche photodiode with separate vertical Ge absorption, lateral Si charge and multiplication configuration [J]. Optical and Quantum Electronics, 51(7): 219, 2019.
[5] Wang C, Li C, Dai J, et al. (2019). "Thermal analysis of VCSEL arrays based on first principle theory and finite element method." Optical and Quantum Electronics 51(6): 196, 2019
[6] Du X., Li C, Li B., et al. “High-performance waveguide-integrated Ge/Si avalanche photodetector with small contact angle between selectively epitaxial growth Ge and Si layers.” Chinese Physics B, 2019, 28(6): 064208
[7] C Li, B. Li, S. Qin, J. et al, “Effects of interface states on Ge-on-SOI photodiodes”, IEEE Journal of the Electron Devices Society, 7: 7-12, 2018.
[8] YJ Feng , C Li,QL Liu, HQ Wang, et al. “Scalability of dark current in silicon PIN photodiode”, Chin. Phys. B, 27(4): 048501, 2018
[9] He X, Li C, Hu Z, et al. Ultrahigh birefringent nonlinear silicon-core microfiber with two zero-dispersion wavelengths[J]. Journal of the Optical Society of America B, 35(1): 122-126, 2018.
[10] C L, C. Xue, Z Liu, et al. High-responsivity vertical-illumination Si/Ge uni-traveling-carrier photodiodes based on silicon-on-insulator substrate. Scientific Reports, 6, 27743, 2016.
[11] H. Wu, C Li, Z. Li, et al. Apodized grating coupler using fully-etched nanostructures. Chinese Physics B, 25(8):84212-084212, 2016.
[12] C. Li*, C.L. Xue, Y.M. Li, C.B. Li, B.W. Cheng, Q.M. Wang. “High Performance Silicon Waveguide Germanium Photodetector”, Chinese Physics B, 24(3): 038502, 2015.
[13] B. Liu, C. Li, Q. Liu, J. Dong, C. Guo, H. Wu, H. Zhou, X. Fan, X. Guo*, C. Wang, X. Sun, Y. Jin, Q. Li, S. Fan, “Hybrid film of silver nanowires and carbon nanotubes as a transparent conductive layer in light-emitting diodes”, Applied Physics Letters, 106(3): 033101. 2015.
[14] C. Li, C.L. Xue*, Z. Liu, B.W. Cheng, C.B. Li, Q.M. Wang. “Zero-bias high-responsivity high-bandwidth top-illuminated germanium p–i–n photodetectors”. Chinese Physics B, 23(3): 038506, 2014.
[15] C. Li, C.L. Xue*, Z. Liu, B.W. Cheng, C.B. Li, Q.M. Wang. “High-Bandwidth and High-Responsivity Top-Illuminated Germanium Photodiodes for Optical Interconnection”. , IEEE Transactions on Electron Devices, 60(3):1183-1187, 2013.