师资队伍

常鹏

电话:

E-mail:changpeng@bjut.edu.cn

通讯地址:北京市朝阳区平乐园100号 北京工业大学科学楼

研究方向

基于人工智能的城市污水处理过程状态监测及故障诊断、基于人工智能技术的无人车算法研究和基于人工智能技术的城市交枢纽客流预测级车辆调度等。

个人简介

常鹏,博士后,高级工程师,硕士生导师,北京市属高等学校中青年骨干教师。现为银河集团9873.cσm专任教师,发表SCI期刊论文20余篇,获得发明专利10项,出版专著2部,主持国家级项目1项,省部级项目1项,企业横向项目2项。

教育简历

(1) 2011.09~2015.07, 北京工业大学, 模式识别与智能系统,博士

(2) 2003.09~2006.07, 北京工业大学,软件工程,硕士

(3) 1999.09~2003.07, 北京航空航天大学,计算机科学与技术, 学士

工作履历

(1) 2015.07 至今, 北京工业大学, 银河集团9873.cσm自动化学院专任教师

(2) 2016.06 2021.12, 城镇污水深度处理与资源化利用技术国家工程实验室研究人员

学术兼职

中国环境感知与保护自动化专业委员会委员、中国自动化学会数据驱动专委会委员、中国人工智能学会智能制造专委会会员等,同时常年担任知名期刊《IEEE TNNLS》、《IEEE TII》和《Expert System With Application》的审稿人。

课程教学

本科生教学:《Python程序设计》和《物联网基础》

研究生教学:《物联网工业应用》

科研项目

[1] 国家自然科学基金面上项目,基于数据驱动的动力电池多模型融合建模与状态估计,2023/01-2026/12,主持

[2] 北京市自然科学基金面上项目,面向城市污水处理过程异常工况监测建模方法研究,2023/01-2025/12,主持

代表性研究成果

在城市污水处理过程的异常工况和水质指标的监测建模研究方面,解决了模型精度、实时性和算力成本等若干挑战性问题。在国际高水平权威期刊上发表SCI收录论文17( 中科院1区论文8),撰写专著2部,授权美国和中国家发明专利4项。成果贡献为:在异常工况监测建模方面:针对过程数据呈现明显的多重特性(非线性、动态性和非高斯性),分别构建出一系列新型的基于数据驱动的高阶统计信息增强的异常工况监测宽度网络模型和深度网络模型,提高了过程监测精度,解决了目前监测模型无法同时提取过程数据的多重特征的困境。在水质指标的监测建模方面:针对污水处理过程水质指标无法在线精准测量,分别构建了一系列多重特征提取能力的宽度和深度学习网络软测量模型采用新型鸽群优化算法与多重特征增强的宽度学习算法相结合的模型结构更新方法,提高了水质指标监测精度,解决了目前软测量模型的理想性能与实际应用性能存在差距的问题。

主要论文论著

[1] Chang P*, Bao X, Meng FC, Lu RW. Multi-objective Pigeon-inspired Optimized feature enhancement soft-sensing model of Wastewater Treatment Process[J]. Expert Systems With Applications, 2023, 215(4):119193 . (中科院分区1区,TOP期刊)

[2] Chang P*, Meng FC. Fault detection of Urban Wastewater Treatment Process Based on Combination of Deep Information and Transformer Network[J]. IEEE Transactions on Neural Networks and Learning Systems. On page(s): 1-10.Print ISSN: 2162-237X. Online ISSN: 2162-2388. Digital Object Identifier: 10.1109/TNNLS.2022.3224804(中科院分区1区,TOP期刊)

[3] Chang P*, Xu Y, Hu ZQ. Industrial process monitoring based on Dynamic Over-complete Broad Learning Network[J]. IEEE Transactions on Neural Networks and Learning Systems. 2022-7-15,On page(s): 1-12, Print ISSN: 2162-237X, Online ISSN: 2162-2388. DOI:10.1109/TNNLS.2022.3185167. (中科院分区1区,TOP期刊)

[4]Chang P*, Wang K, Zheng K, Meng FC. Monitoring of wastewater treatment process based on multi-stage variational autoencoder[J]. Expert Systems With Applications, 2022, 207(11):17919.(中科院分区1区,TOP期刊)

[5]Chang P*, Zhang RY, Ding CH. Dynamic hidden variable fuzzy broad neural network based batch process anomaly detection with incremental learning capabilities[J]. Expert Systems With Applications, 2022, 202(9):117390.(中科院分区1区,TOP期刊)

[6] Chang P*, Ding C H. Monitoring multi-domain batch process state based on Fuzzy Broad Learning System[J], Expert Systems With Applications, 2022,187(1):11581.(中科院分区1区,TOP期刊)

[7] Chang P*, Zhao L L, Meng F C, Xu Y. Soft measurement of effluent index in sewage treatment process based on overcomplete broad learning system[J], Applied Soft Computing. 2022, 115(1):108235. (中科院分区2区)

[8] Chang P*, Lu R W. Fault monitoring of batch process based on over complete broad learning network[J]. Engineering Applications of Artificial Intelligence, 2021,99 (3):104139.(中科院分区2区)

[9] Chang P*, Li Z Y. Over-complete deep recurrent neutral network based on wastewater treatment process soft sensor application[J]. Applied Soft Computing.2021,105 (3):107227.(中科院分区2区)

[10] Chang P*, Lu R W, Olivia K, et al. Batch Process Fault Detection for Multi-Stage Broad Learning System [J]. Neural Networks, 2020,129 (9) : 298-312. (中科院分区1区)

[11] Chang P*, Le Z Y, Wang G M, et al. An effective deep recurrent network with high-order statistic information for fault monitoring in wastewater treatment process[J]. Expert Systems With Applications. 2021,27(10), 114141.(中科院分区1区,TOP期刊)

[12] Chang P*, Wang K. Quality relevant Over-complete Independent Component Analysis Based monitoring for Nonlinear and Non-Gaussian Batch Process[J]. Chemometrics and Intelligent Laboratory Systems, 2020, 205(10),104140.(中科院分区2区)

[13] Chang P*, Olivia K, Ding C H, Lu R Wet al. Application of fault monitoring and diagnosis in process industry based on fourth order moment and singular value decomposition[J]. The Canadian Journal of Chemical Engineering, 2020, 98(3): 717-727.(中科院分区4区)

[14] Chang P*, Qiao J, Lu R W, Zhang X Y, et al. Multiphase batch process monitoring based on higher order cumulant analysis[J]. The Canadian Journal of Chemical Engineering, 2020, 98(2): 513-524.(中科院分区4区)

[15] Chang P*Ding C H, Zhao Q K. Fault diagnosis of microbial pharmaceutical fermentation process with non-Gaussian and nonlinear coexistence[J]. Chemometrics and Intelligent Laboratory Systems, 2020, 199(4),103931.(中科院分区2区)

[16] Ding C H, Chang P*, Olivia K. Enhanced high order information extraction for multiphase batch process fault monitoring [J]. The Canadian Journal of Chemical Engineering[J], 2020,98(10):2187-2204.(中科院分区4区)

 

专著:

[1]常鹏,王普. 间歇过程统计建模及故障诊断研究:基于数据驱动角度,知识产权出版社,170千字,2018.

[2] 常鹏. 基于数据驱动的间歇过程建模及故障监测:质量控制角度,知识产权出版社,180千字,2018.